AAAV RELIABILITY GROWTH PROJECTIONS AILEEN G. KELMARTIN - LOGISTICS ENGINEERING DIVISION MANAGER ADVANCED AMPHIBIOUS ASSAULT VEHICLE PROGRAM ### **AAAV MISSION** Provide High Speed Transport of Embarked Marine Infantry From Ships Located Beyond the Horizon to Inland Objectives Provide Armor Protected Land Mobility and Direct Fire Support During Combat Operations ### Reconfiguration **Interoperability** * Information Exchange Requirements ### KEY PERFORMANCE PARAMETERS **100% of Top** Level *IERs | <u>CRITERIA</u> | THRESHOLD | OBJECTIVE | |--|------------------|------------------| | High Water Speed - Sea State 3, 3' significant wave height, for not less than one continuous hour | 20 knots | 25 knots | | Land Speed - Forward speed on hard surface road | 69 kph | 72 kph | | Firepower - Maximum effective range.
Main armament range. Interoperability/
standard ammunition with other service(s) | 1500m | 2000m | | Armor Protection - Any azimuth | 14mm/300m | 30mm/1000m | | Reliability - Mean Time Between Operational Mission Failures | 70 hrs | 95 hrs | | Carrying Capacity | 17 Marines | 18 Marines | 100% of Critical *IERs ### **AAAV PROGRAM SCHEDULE** 1 October 2002 ### **AAAV Testing Strategy** **Production** Readiness and Low Rate Initia • IOT&E **Production** **Concept Exploration** Hydrodynamic Test Rig Automotive Test Rig Program Development and Risk Reduction - USER Juries - Combined Arms Exercise - Force on Force Modeling - AAAV(C) EOA - •AAAV(P) EOA Integrated Functionality System Development and Demonstration - 9 Vehicles 8 (P) 1 (C)SDD OA - SDD OA - Hot Weather - Cold Weather OA - RAM-D Testing - IETM Validation/ - Verification - User Juries Multi-Vehicle Operations Operational Suitability IOT&E Test to Prove **FUSL** ### Testing Highlights - Water Testing 1924 Hours - Firepower Testing - Ballistic Hull & Turret Survivability Testing - C4I Testing - AAAV (P) and AAAV(C) EOA - Logistics Demonstration (Training & Maintenance - IETM Demonstration - User Juries ## Shoot, Communicate, Carry & Protect **Move on Land** Carry **Move on Water** Communicate Shoot **Protect** ### IDEALIZED GROWTH CURVE WITH STEPPED RELIABILITY PROJECTIONS ### RELIABILITY GROWTH METHODOLOGY - Idealized Reliability Growth curve established for SDD using AMSAA-Crow model - Reliability requirements allocated to subsystem level - Failure events documented in Failure Reporting, Analysis and Corrective Action System (FRACAS) - Failure Mode Indicators (FMIs) employed to develop failed item Histograms - Safety, Operational Mission Failures and Trends processed by Failure Prevention Review Board (FPRB) - Corrective actions approved and scored by FPRB - Demonstrated and projected reliability recorded on the growth curve ### IPT LEVEL GROWTH TRACKING ### **Suspension Growth Curve** | Reliability Drivers | Planned Improvements | Cost | Wgt | |--------------------------|---|--------|--------| | • | · | Impact | Impact | | | | | | | Track Impact Performance | New Steel Track development | DEC | INC | | HSU Seal Reliable | Enhanced new seal replacement | N/A | N/A | | Performance | | | | | HSU Connecting Bar | Increasing the cross section for area & inertia | N/A | Min | | Robustness | strength and handling higher loads | | inc | | | | | | # Failure Reporting, Analysis and Corrective Action System (FRACAS) - A closed loop process - for the collection for failure event information - to support Root Cause Analysis - to document corrective actions - Each Failure Report contains a Failure Mode Indicator (FMI) and Fix Effectiveness Factor (FEF) - FRACAS reports are the primary source of data for use by the Failure Prevention Review Board ### **Overall FRACAS Status** ## Hydraulic Failures Hydraulic Failures | • | FMI | GROUP | Failure Mode | Equipment | |---|--------|-------|---------------------|-----------------| | • | HYD001 | AA | Leak, Interface | Line, Hydraulic | | • | HYD002 | . AA | Leak, Structural | Line, Hydraulic | | • | HYD003 | s AA | Chaffing | Line, Hydraulic | | • | HYD004 | AA | Corrosion | Line, Hydraulic | | • | HYD005 | i AA | Damaged (I.e. Bent) | Line, Hydraulic | | • | HYD006 | S AA | Miscellaneous | Line, Hydraulic | | • | | | | | | • | HYD001 | ВВ | Leak, Interface | Hose, Hydraulic | | • | HYD002 | в ВВ | Leak, Structural | Hose, Hydraulic | | • | HYD003 | BB | Chaffing | Hose, Hydraulic | | • | HYD004 | BB | Corrosion | Hose, Hydraulic | | • | HYD005 | BB | Damaged | Hose, Hydraulic | | • | HYD006 | BB | Miscellaneous | Hose, Hydraulic | # 30 ### **Hydraulic FMIs by Incidence** # FAILURE PREVENTION & REVIEW BOARD (FPRB) - Joint System Level Committee Focusing on Root Cause Analysis Process for Test and Evaluation Anomalies - Primary Members Include System Integrators, Logistics, and the Marine Proponent - Ability To Redirect Resources & Prioritize Redesign - Focus - Safety Related Anomalies - Operational Mission failures - Trends - Currently 400 + Failure Reports Reviewed and Scored By The FPRB - Assigns Fix Effectiveness Factor (FEF) ### Fix Effectiveness Factors for Resolution of Failures | Fix Effectiveness | Qualitative Effect | Effectiveness Criteria | |-------------------|--|--| | Factor | | | | 1.0 | Failure mode eliminated | Component eliminated or S/W changed to prevent problem recurrence. | | 0.9 | Extremely high probability that the underlying failure mode will not reoccur | Extensive RCA methodology and vehicle test data verifies problem resolution. | | 0.8 | High probability that the underlying failure mode will not reoccur | RCA methodology applied along with component test data to verify problem resolution. | | 0.7 | Above average probability that the underlying failure mode will not reoccur | RCA methodology applied along with vendor/test bed data or empirical data (e.g. FEA or materials analysis) to verify the problem resolution. | | 0.5 | Medium probability that the underlying failure mode will not reoccur | Limited RCA methodology applied along with engineering analysis to define the problem resolution. | | 0.3 | Low probability that underlying failure mode will not reoccur | Engineering judgement applied to define the problem resolution. | | | | | | 0.0 | No Effect On The Design | Failure data not captured thereby prohibiting failure analysis, or Failure Mode not repeatable or fix not economical, or Any anomaly that requires no investigation and is not expected to reoccur (e.g. test equipment failure, maintenance induced failure, etc.). | • FEF Exception – An exception to the FEF Criteria is allowable when the proposed fix is intuitively obvious; e.g. keystroke error in written programming code. These recommended FEFs should be documented in the remarks section of the FRACAS reports. ## Fix Effectiveness Factors (Subsystem Level) ### **Reliability Centered Maintenance** - Uncovers failure modes early in the design process - Timely design influence - Provides design change recommendations based on a structured design review process - Teams consist of those who know the selected equipment the best designers, maintainers, log personnel - RCM-II Example (Engine) - RCM-II identified 204 potential failure modes - FRACAS records indicate 92 failure modes - Following comparison of actual failure modes to what resulted from the RCM-II process, all but 4 failure modes were documented. - Failure modes not yet experienced in test were referred to engineering for analysis and proactive corrections to the design - Applying to processes as well as products ### **In Summary** - SDD design focus is driven by test anomalies and Reliability Centered Maintenance findings - Integrated functionality in PDRR prototypes allows for earlier identification of failure modes - Reliability Centered Maintenance uncovers failure modes before they happen - SDD Reliability Growth Program plan includes refurbishment periods to allow for the introduction of corrective actions - SDD Reliability Growth Projections utilize demonstrated reliability and apply fix effectiveness factors of defined corrective actions ### **QUESTIONS** ### AAAV (C) ### "State of the Art C4I Architecture" #### **MISSION** - Provide high speed transport and command and control capability to the embarked Commander and Staff in all operating environments. - Enable the embarked battalion/regimental commander and his staff members to function as a battalion or regimental tactical echelon command post. #### C2 SYSTEMS - Advanced Field Artillery Tactical Data System - C2 Personal Computer - Intelligence Analysis System - Tactical Combat - Operations - •Flexibility for Technology and Software Enhancements #### **VEHICLE PERFORMANCE** - Crew of 3 - •Mobility, Armor Protection, Same as the AAAV(P) - •7.62mm, M240 Machine Gun ### COMMUNICATION CAPABILITY - •6-9 Man Staff Capable - •Single Channel Ground and Air Radio Systems - Enhanced Precision - Location Reporting SystemMulti-Mode Multi-Band Radios - Wireless Voice Intercom - Migration to Joint Tactical Radio System planned for the future - Interoperable - VHF, UHF, HF, UHF (SATCOM) Capable #### NAVIGATION SYSTEMS - Global Positioning System Inertial Navigation System - Digital Compass ### TEST, ANALYZE AND FIX (TAAF) - TAAF process not new used by NASA in the 60s and promoted by U.S. Navy since early 70s - Elements of a TAAF Program - Testing conducted using simulated operational mission and environmental profiles - Determines design and manufacturing process weaknesses - TAAF process integrated with other development test activity - Safety and Operational Mission Failures, as a minimum, are subjected to root cause analysis - Corrective actions developed and incorporated into the platform - Fix effectiveness is measured